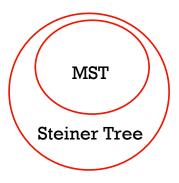
2-Approximation for Prize-Collecting Steiner Forest

Ali Ahmadi, Iman Gholami, MohammadTaghi Hajiaghayi, Peyman Jabbarzade, Mohammad Mahdavi University of Maryland

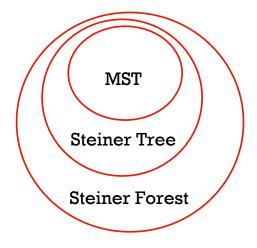
Steiner Tree

- Generalization of MST
- Weighted graph
- Set of vertices called terminals
- Connect terminals
 - Minimize total edge weight



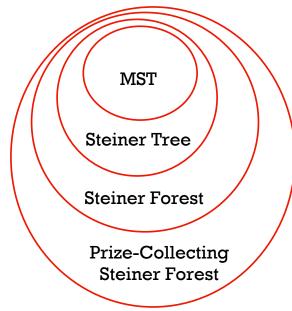
Steiner Forest

- Generalization of Steiner tree
- Set of pair of vertices called demand
- Connect vertices of each demand
 - Minimize total edge weight

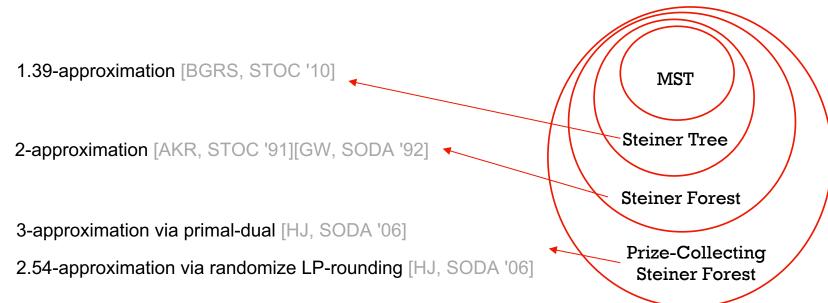


Prize-Collecting Steiner Forest (PCSF)

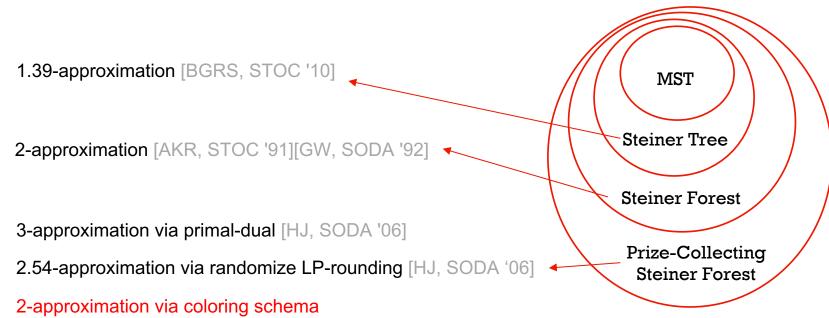
- Generalization of Steiner Forest
- Set of pair of vertices called demand
- Each demand has a penalty
 - Either satisfy the demand
 - Or pay its penalty
- Minimize total edge weight + penalties paid



State of the Art



State of the Art



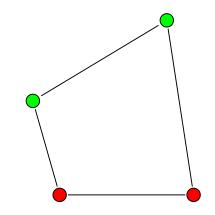
Our contribution

- Coloring schema
 - 2-approximation Steiner forest [GW, SODA '92]
 - 3-approximation PCSF [HJ, SODA '06]
- 2-approximation PCSF
 - Beat 2.25 integrality gap [KOPRSV, APPROX-RANDOM '17]

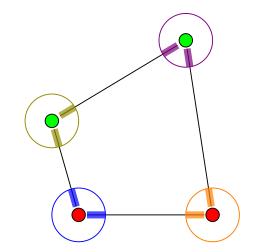
2-Approximation Steiner forest

Definitions

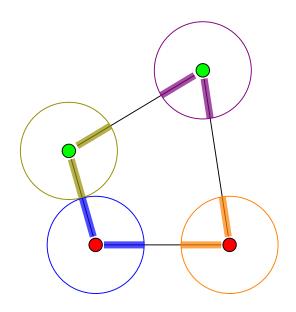
- Edges are curve with length=weight
- We maintain a forest
 - Empty at the beginning
- Active sets
 - Connected components need to extend



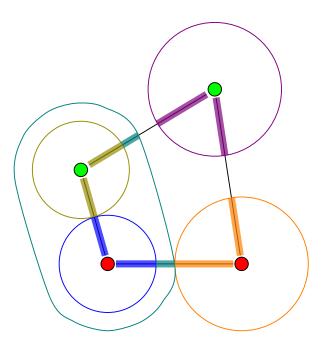
- Each set has a unique color
- Active sets color their adjacent edges
 - Edges with exactly one endpoint in them



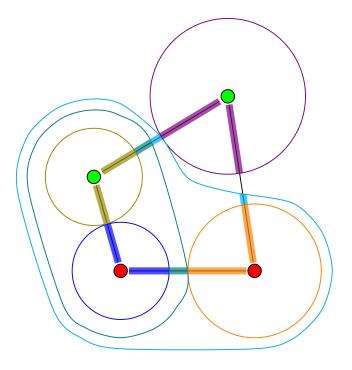
- Each set has a unique color
- Active sets color their adjacent edges
 - Edges with exactly one endpoint in them
- One edge is fully colored
 - Add edge to our forest



- Each set has a unique color
- Active sets color their adjacent edges
 - Edges with exactly one endpoint in them
- One edge is fully colored
 - Add edge to our forest
 - Merges 2 connected components

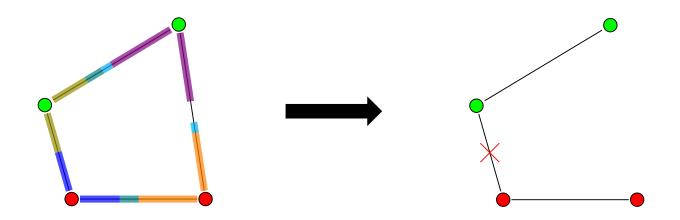


- Each set has a unique color
- Active sets color their adjacent edges
 - Edges with exactly one endpoint in them
- One edge is fully colored
 - Add edge to our forest
 - Merges 2 connected components
- Finish when all demands are satisfied



Final Step

• Remove redundant edges



Analysis

- X: total coloring moment for all active sets
- Optimal solution is at least X
 - Active sets cut demands
 - They color every solution
- Our solution is at most 2X
 - At each moment, # edges are coloring ≤ 2 # active sets

3-Approximation Prize-Collecting Steiner Forest

PCSF

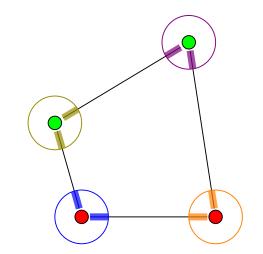
- Each pair has a penalty
- Don't connect a pair with a cost exceeding its penalty
- Dynamic coloring to maintain this constraint

Dynamic Coloring

- Each pair has a unique color
 - Limit colors by their pair penalty
- Run static coloring
- Assign each moment to a pair

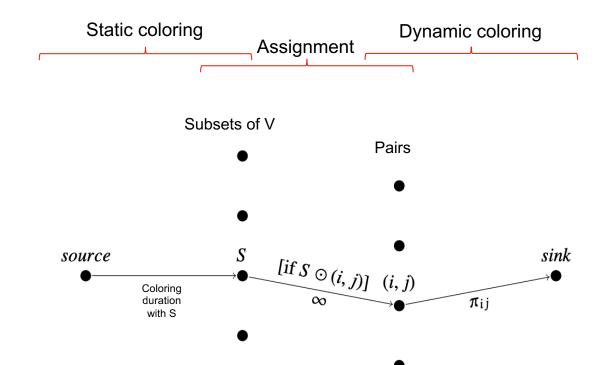
Dynamic Coloring

- Each pair has a unique color
 - Limit colors by their pair penalty
- Run static coloring
- Assign each moment to a pair
 - Active set cut the pair



SetPairGraph

• Find max-flow



Algorithm

- Run static coloring
- Hold if further assignment is impossible
 - Some pairs run out of their color (tight pairs)
 - Pay their penalty
 - Deactivate some active sets
- Repeat until there are no active sets

Final Step

- Consider max-flow with minimal tight pairs
- Pay penalty for tight pairs
- Connect other pairs
- Remove redundant edges

Analysis

- Our forest is at most 2 times the optimal solution
 - Similar to Steiner forest
- Our penalty is at most the optimal solution
 - Since the limit of using each color
- In total: 3-approximate solution

2-Approximation Prize-Collecting Steiner Forest

Iterative Algorithm

- 1. Run 3-approximation algorithm
- 2. If no penalties are paid, return
- 3. Remove demands if we paid them
 - a. Pay their penalties in further solutions
- 4. Recursively run the algorithm on the new instance

Iterative Algorithm

- 1. Run 3-approximation algorithm
- 2. If no penalties are paid, return
- 3. Remove demands if we paid them
 - a. Pay their penalties in further solutions
- 4. Recursively run the algorithm on the new instance

• Return the best solution

Intuition

- We paid tight pairs' penalty
 - Tight pairs color edges and their penalty are paid
- Analysis
 - Induction on the number of pairs with non-zero penalty
 - Comparing solution of recursive instance and input instance

Induction Base

- 1. Run 3-approximation algorithm
- 2. If no penalties are paid, return
- 3. Remove demands if we paid them
 - a. Pay their penalties in further solutions
- 4. Recursively run the algorithm on the new instance

• Return the best solution

2-approximate solution Similar to Steiner forest

Induction Hypothesis

- 1. Run 3-approximation algorithm
- 2. If no penalties are paid, return
- 3. Remove demands if we paid them
 - a. Pay their penalties in further solutions
- 4. Recursively run the algorithm on the new instance

2-approximation for the recursive instance

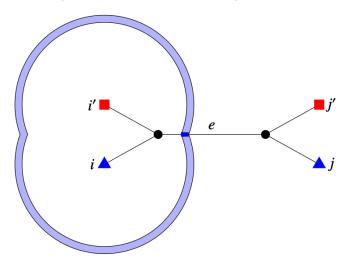
• Return the best solution

Induction Step

- Whether the cost of the optimal solution for the recursive instance is low
 - Recursive call gives 2-apprxomate solution
- Or the optimal solution has higher cost than our expectation
 - The 3-approximation algorithm has 2-approximate solution!

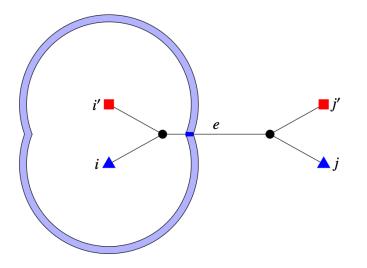
Review

- Tight pairs: pairs run out of color
- 3-approximation algorithm has minimal tight pairs
- Each assignment to a tight pair cannot be assigned to a non-tight pair



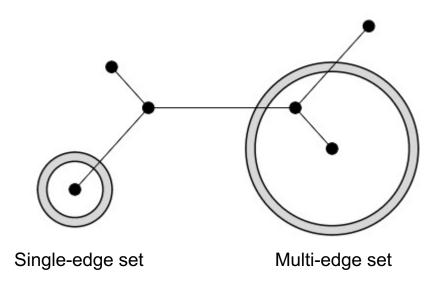
Removing Edges

- If an active set cuts only one edge of the optimal solution
- And its coloring assigned to a tight pair
- Remove the edge
 - Only disconnects pairs cut by the set
- Tight pairs removed from recursive instance
 - Still valid solution for recursive instance



Divide Coloring with Tight Pairs

• How many edges in the optimal solution cut by an active set?



Finish Proof

- Singe-edge sets are majority
 - The optimal solution of recursive instance costs low
 - The recursive call costs low
- Multi-edge sets are majority
 - The optimal solution is large
 - The 3-approximation algorithm isn't that bad

Finish Proof

- Singe-edge sets are majority
 - The optimal solution of recursive instance costs low
 - The recursive call costs low
- Multi-edge sets are majority
 - The optimal solution is large
 - The 3-approximation algorithm isn't that bad
- Minimum of them is 2-approximate solution

Questions?

Thanks!

Registration and travel support for this presentation was provided by National Science Foundation.