
Prize-Collecting Steiner Tree:
A 1.79 Approximation

Ali Ahmadi, Iman Gholami, MohammadTaghi Hajiaghayi,
Peyman Jabbarzade, Mohammad Mahdavi

University of Maryland

STOC 2024

Problem Definition
Prize Collecting Steiner Tree (PCST)

• Given a weighted graph with a root with penalties assigned to vertices

• Find a tree T including root
• Minimizing total weight of T + penalties for excluded vertices

• Rooted and Unrooted versions are equivalent
• π(root) = ∞

• NP-Hard

∞

5

1

1

7

8
9

4

4

3

Problem Definition
Prize Collecting Steiner Tree (PCST)

• Given a weighted graph with a root with penalties assigned to vertices

• Find a tree T including root
• Minimizing total weight of T + penalties for excluded vertices

• Rooted and Unrooted versions are equivalent
• π(root) = ∞

• NP-Hard

∞

5

1

7

8
9

3

1

4

4

Problem Definition
Steiner Tree

• Given a weighted graph with a set of nodes called terminals

• Find a tree T spanning all terminals
• Minimizing total weight of T

• Specification of PCST
• π(v) = ∞ for all terminals and π(v) = 0 for other vertices

• A generalization of MST

• NP-Hard

∞

∞

0
7

8
9

4

4

3
0

Problem Definition
Steiner Tree

• Given a weighted graph with a set of nodes called terminals

• Find a tree T spanning all terminals
• Minimizing total weight of T

• Specification of PCST
• π(v) = ∞ for all terminals and π(v) = 0 for other vertices

• A generalization of MST

• NP-Hard

∞

∞

7

8
9

3

0

4

4

0

Previous Work
Steiner tree

• Trivial 2-approximation [KMB, Acta Informatica 1981]
• MST on terminals when metric

• Sub 2 approximations:
• 11/6≈1.833 [Zel, Algorithmica 1993]
• ln(4)+ε≈1.39 [BGRS, STOC’10]

• We use this as a black box

Previous Work
PCST

• 2-Approximation [GW, SIAM J. Comput. 1995]
• Primal-Dual Approach
• A crucial part of our work

• 1.9672-Approximation [ABHK, SIAM J. Comput.’11]

• Our contribution: 1.7994-Approximation

Goemans Williamson
Algorithm
2-approximation algorithm
Coloring interpretation

Basics

• Edges are curves with length=weight

• We maintain a forest F
• Empty at the beginning

• Each vertex has a unique color
• With coloring capacity π(v)

• Active sets
• Connected components of F with color remained

• Active sets color their adjacent edges

∞

5

1

1

7

8
9

4

4

3

GW Algorithm

• Active sets color their adjacent edges

• An edge is fully colored
• Add the edge to F
• Merge 2 connected components

• Finish when there is only one active set

• Vertices run out of color are dead, otherwise live

• Prune phase: If a dead set cuts a single edge from F, remove the edge

• Return component of root

Intuition on Approximation Guarantee

• X: total coloring moment for all active sets

• Optimal solution is at least X
• For each moment of coloring

• Either color at least one edge of OPT, or
• We pay a proportional penalty

• Our solution is at most 2X
• For each moment of coloring

• Either color 2 edges of our solution on average, or
• We pay a proportional penalty

Modify Penalties

• Use parameter 1 <= β <= 2:

• Set coloring capacities π(v) / β

• Still 2-approximation

• Colors run out earlier
• Fewer vertices connected to root

• Why modify penalties?

This is Why

• X: total coloring moment for all active sets

• Optimal solution is at least X
• For each moment of coloring

• Either color at least one edge of OPT, or (coefficient 1)
• We pay a proportional penalty (coefficient 1)

• Our solution is at most 2X
• For each moment of coloring

• Either color 2 edges of our solution on average, or (coefficient 2)
• We pay a proportional penalty (coefficient 1)

Our Recursive Algorithm
1.7994-approximation algorithm

Recursive Algorithm

• Run GW Algorithm with parameter β (GW solution)

• Pay penalties for all dead vertices
• Remove those penalties from the instance

• Run SteinerTree on live vertices (ST solution)

• If we removed penalty in this phase

• Recursively run the algorithm on the modified instance (IT solution)

• Return the best solution among all obtained

Why Pay Dead Vertices Penalties?

• Some dead vertices are connected to root

• Dead vertices have used all of their color capacity

• Connecting them costs too much

• Let’s pay their penalty

Why SteinerTree?

• If most vertices are connected in OPT and GW

• Let’s connect them more optimal
• Cost 1.39𝑐(𝑇𝑂𝑃𝑇) to connect vertices of TOPT

• Issue: still we may connect more vertices
• Connect them to 𝑇𝑂𝑃𝑇 the way that GW do
• At most pay 1.39 times the cost of GW for them

Why Recursive Solution?

• Let R be the recursive instance
• If our algorithm is 𝛼-approximation

• Using induction, the recursive solution is 𝛼 ∙ 𝑐𝑜𝑠𝑡 𝑂𝑃𝑇𝑅 + 𝜋(𝑑𝑒𝑎𝑑 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠)

• Recap about coloring of connected vertices
• Active sets color at least one edge of OPT
• They color on average two edges of GW

• If most of the times active sets color exactly one edge of OPT
• 𝑐𝑜𝑠𝑡 𝑂𝑃𝑇𝑅 is too small

• We can remove many edges from 𝑇𝑂𝑃𝑇 to have a valid solution for instance R

• Otherwise
• GW is a good solution

Analysis Overview

• Classify vertices based on
• Whether connected to root in OPT
• Whether is a dead vertex in GW

• We bound every solution as 𝛼 ∙ 𝑐𝑜𝑠𝑡 𝑂𝑃𝑇 + 𝑒𝑥𝑡𝑟𝑎

• Take a weighted average on different solutions
• Find 𝛼, 𝛽, and weights such that extra value become at most zero

• 𝛼 = 1.7994, 𝛽 = 1.252

• Then the minimum is 𝛼-approximate solution

Thanks

	Slide 1: Prize-Collecting Steiner Tree: A 1.79 Approximation
	Slide 2: Problem Definition Prize Collecting Steiner Tree (PCST)
	Slide 3: Problem Definition Prize Collecting Steiner Tree (PCST)
	Slide 4: Problem Definition Steiner Tree
	Slide 5: Problem Definition Steiner Tree
	Slide 6: Previous Work Steiner tree
	Slide 7: Previous Work PCST
	Slide 8: Goemans Williamson Algorithm
	Slide 9: Basics
	Slide 10: GW Algorithm
	Slide 11: Intuition on Approximation Guarantee
	Slide 12: Modify Penalties
	Slide 13: This is Why
	Slide 14: Our Recursive Algorithm
	Slide 15: Recursive Algorithm
	Slide 16: Why Pay Dead Vertices Penalties?
	Slide 17: Why SteinerTree?
	Slide 18: Why Recursive Solution?
	Slide 19: Analysis Overview
	Slide 20: Thanks

