

Breaking a LongStanding Barrier: 2-ε Approximation for Steiner Forest

Peyman Jabbarzade

Ali Ahmadi

Iman Gholami

Mohammad T. Hajiaghayi

Mohammad Mahdavi

Steiner Forest

- Given a weighted graph
- And a set of pairs of vertices

Steiner Forest

- Given a weighted graph
- And a set of pairs of vertices
- Select a subset of edges to connect vertices in each pair
 - Minimize the total cost of selected edges
- Generalization of Steiner Tree

Steiner Tree

- Given a weighted graph
- And a set of vertices as terminals

Steiner Tree

- Given a weighted graph
- And a set of vertices as terminals
- Select a subset of edges to span the terminals
 - Minimize the total cost of selected edges
- Generalization of MST

Previous Results

• Steiner Tree

- Introduced in 1811
- Trivial 2-approximation
- 11/6-approx. [Zel, Algorithmica'93]
- 1.65-approx. [KZ, J. Comb. Optim.'97]
- 1.55-approx. [RZ, SIAM J. Discret. Math.'05]
- 1.39-approx. [BGRS, STOC'10]
- Steiner Forest
 - 2-approx. [AKR, SIAM J. Comput'95]
 - Generalization and refinement [GW, SIAM J. Comput.'95]
 - 96-approx. Greedy [GK, STOC'15]
 - 69-approx. Local Search [GGKMSSV, ITCS'18]

Our Contribution

• Steiner Tree

- Introduced in 1811
- Trivial 2-approx.
- 11/6-approx. [Zel, Algorithmica'93]
- **1.65-approx.** [KZ, J. Comb. Optim.'97]
- 1.55-approx. [RZ, SIAM J. Discret. Math.'05]
- 1.39-approx. [BGRS, STOC'10]
- Steiner Forest
 - 2-approx. [AKR, SIAM J. Comput'95]
 - Generalization and refinement [GW, SIAM J. Comput.'95]
 - 96-approx. Greedy [GK, STOC'15]
 - 69-approx. Local Search [GGKMSSV, ITCS'18]

- Steiner Tree
 - 1.943-approx. [AGHJM'25]
- Steiner Forest
 - (2-10⁻¹¹)-approx. [AGHJM'25]

Legacy Moat Growing Algorithm

The primal-dual 2-approximation algorithm

Basics

- Edges are curves with length=cost
- Maintain a forest
 - Initially empty
- Active sets
 - Connected components need to extend

Moat Growing

- Active sets color their adjacent edges
 - Edges with exactly one endpoint in them
- Once an edge becomes fully colored
 - Add the edge to our forest

Moat Growing

- Active sets color their adjacent edges
 - Edges with exactly one endpoint in them
- Once an edge becomes fully colored
 - Add the edge to our forest
 - Merge its endpoints connected components
 - Continue grow together (if still active)

Pruning Phase

• Remove redundant edges

Analysis

- R: Total growth duration across all active sets
- Optimal solution is at least R
- Our solution is at most 2R
- So, it is a 2-approximate solution

OPT Lower Bound

- R: Total growth duration across all active sets
- Optimal solution is at least R
- A component is active for connecting some pairs
 - OPT connects those pairs
 - The active set cuts the path between them
 - So, it is coloring at least one edge of OPT

Solution Upper Bound

- R: Total growth duration across all active sets
- Our solution is at most 2R
- All selected edges are fully colored
- At each moment of the algorithm
 - Active sets on average color at most two segments of it

How to Improve the Algorithm?

Observations on the analysis

Recap Analysis

- R: Total growth duration across all active sets
- Optimal solution is at least R \rightarrow improve to $(1+\epsilon)R$
- Our solution is at most 2R -> improve to (2-ε)R
- It is a 2-approximate solution -> (2-ε)-approximate solution

Better Lower Bound for OPT

- R: Total growth duration across all active sets
- Optimal solution is at least R
- Active sets color at least one edge of OPT
- If they color multiple edges for ε fraction of total growth
 - OPT is larger than $(1+\epsilon)R$

Reduce Total Growth Duration (R)

- R: Total growth duration across all active sets
- Our solution is at most 2R
- Modifying active sets behavior
 - Reducing total growth by a constant factor
 - Resulting a new solution
 - Pairs should be still connected
- The new solution is at most $(2-\epsilon)R$

Objective

- R: Total growth duration across all active sets
- Optimal solution is at least R \rightarrow improve to $(1+\epsilon)R$
- Our solution is at most 2R -> improve to (2-ε)R
- Reduce total growth to obtain
 - Total growth < $(1-\epsilon)OPT$

Local Search

Incremental reduction on total growth

An Example on Steiner Tree

Boost Action

- Select a vertex and a specific time
 - Let the vertex remains active until that time
- Win: Reduction in total growth
- Loss: Additional growth introduced by the boost action
- Valuable boost action
 - Win > β .Loss
- Apply any valuable boost action while one exists

An Example on Steiner Tree

Previous Local Searches

- Steiner Tree
 - 11/6-approx. [Zel, Algorithmica'93]
 - 1.55-approx. [RZ, SIAM J. Discret. Math.'05]
- Start with a 2-approximate solution
- Find a constant-size subgraph
 - Such that adding it improve the solution
- Do this until no improvement is possible

Previous Local Searches

- Steiner Tree
 - 11/6-approx. [Zel, Algorithmica'93]
 - 1.55-approx. [RZ, SIAM J. Discret. Math.'05]
- Start with a 2-approximate solution
- Find a constant-size subgraph
 - Such that adding it improve the solution
- Do this until no improvement is possible

Comparison with Previous Approaches

- Our objective is reducing total growth
 - Instead of the solution cost
- May lead to a worse solution
 - Give a better upper bound for the solution
 - And more structural properties
 - And make it possible to analysis with growth of active sets

Recap: Objective

- R: Total growth duration across all active sets
- Optimal solution is at least R
- Our solution is at most 2R
- Reduce total growth to obtain (local search)
 - Total growth < (1-ε)OPT

Claw Property

A result of our local search

Claw Property

- After our local search
 - No valuable boost action
 - Win < β .Loss
 - Win = current total growth total growth after boost action

• Current total growth $\lesssim \frac{1}{2}$ claw's cost + max growth

Claw Property

- For any three vertices
- Total growth except max $\lesssim \frac{1}{2}$ claw's cost
 - Objective: Total growth < (1-ε)OPT

Generalized Claw Property

- For any number of vertices S
- Bound the total growth corresponds to vertices in ${\cal S}$
 - By a factor $(1-\epsilon)$ of the cost of any tree connecting them
- Assume WLOG that tree is binary with S as leaves

How Does It Work?

- For any vertex of *T*
 - Its representative is the nearest leaf in its subtree
 - Fix the three representatives of
 - Its two children and its sibling
 - Write claw property for these leaves
 - (total-max) growth $\lesssim 1\!\!\!/_2$ claw's cost
- Sum up the inequalities

How Does It Work?

(total-max) claw growth $\lesssim \frac{1}{2}$ claw's cost

+ (total-max) claw growth $\lesssim \frac{1}{2}$ claw's cost

+ ...

+ (total-max) claw growth $\lesssim \frac{1}{2}$ claw's cost

3(total–max) leaves growth \lesssim 5/2 tree's cost

- Total growth max \lesssim 5/6 cost of tree
 - Only works when vertices are actively connected

Actively Connect

- Two vertices are actively connected if
 - They are in active sets until reaching each other

Issue With Not Actively Connected

- Total growth except max $\lesssim \frac{1}{2}$ claw's cost
- Only comparing small value with claw's cost

Recap: How Does It Work?

(total-max) claw growth $\lesssim \frac{1}{2}$ claw's cost

+ (total-max) claw growth $\lesssim \frac{1}{2}$ claw's cost

+ ...

+ (total-max) claw growth $\lesssim \frac{1}{2}$ claw's cost

3(total–max) leaves growth \lesssim 5/2 tree's cost

- Total growth max \lesssim 5/6 cost of tree
 - Only works when vertices are actively connected

Claw Property in Steiner Tree

- All terminals are actively connected
- Generalized claw property applicable
- Local search achieves 1.943-approximate solution

Claw Property in Steiner Forest

- For each connected component in the OPT
 - Want to bound the growth corresponds to its vertices
 - By the cost of that component
- But
 - Those vertices may not be actively connected
 - Extension
 - Bound excludes the maximum growth
 - Autarkic pairs

Extension

When vertices are not actively connected

Why Extension?

- For applying claw property
 - Vertices need to be actively connected
- Not guaranteed for components of OPT
- Idea: Let components remain active a bit more
- More vertices connect actively

Extension

- Given a moat growing algorithm
- Assign a potential to each active set
 - *c* fraction of its growth
- Run the moat growing algorithm again
- Sets consume potential of their subsets to remain active

How Does It Help?

- If most vertices in a component of OPT actively connect
 - Use generalized claw property
- Otherwise
 - Vertices in that component must be far
 - Cost of OPT is already large compared to total growth
- We find a better lower bounds for OPT either way

Autarkic Pairs

For large maximum growth

Claw Property Shortcoming

- For applying claw property on a set of vertices
 - They need to be connected in the optimal solution

e₁

(2)

e₂

e₂

46

e₁

(3)

- For each OPT's component
 - Claw property bound the total growth
 - Except the maximum one

Classify Components of OPT

- Let C be a connected component in OPT
 - Total growth $\leq \text{cost}(C)$
- Claw property
 - Total growth except max
- If maximum growth is small
 - Total growth is small
- Otherwise
 - Claw property is not enough

Tight Components Structure

How to Handle Tight Components?

- Since we have two far groups
- Buy shortest path for (only) one pair
- Add zero-cost edge between them
- Rerun the moat growing algorithm
 - Those groups do not need to grow excessively
- But we don't know OPT!

Autarkic Pair

- Two group of unsatisfied vertices
- Pair of each other
- Vertices in each group grow only with each other
- Their distance almost match their growth

Algorithm

- Find autarkic pairs
- Connect one pair of vertices from each group
- Add a zero-cost edge
- Rerun Legacy Moat Growing algorithm

Intuition of Analysis

- A general idea to improve an α -approx. algorithm (α OPT)
- Find a structure with cost X and add it to our solution
 - Here structure is a subset of edges
- Set the structure cost equal to 0
- Let OPT' of the new instance be reduced by Y (OPT'=OPT-Y)
- Run α -approx. algorithm on the new instance (α (OPT-Y)+X)
- If X < $(\alpha \varepsilon)$ Y (improvement condition)
 - And if X (or Y) is a constant fraction of OPT (significant condition)
 - We have an $(\alpha \varepsilon)$ -approx. algorithm

Intuition of Analysis

- α =2 (improving 2-approximation algorithm)
- The structure with cost X
 - Shortest paths between groups of each autarkic pair
- Set the structure cost equal to 0
- Let OPT' of the new instance be reduced by Y (OPT'=OPT-Y)
- Run 2–approx. algorithm on the new instance (2OPT-2Y+X)
- X < (2-ε)Υ (X≈Υ)
 - If tight components are significant (significant condition)
 - We have a (2-ε)-approx. algorithm

Conclusion

- For tight components
 - Autarkic pair works well
- For others
 - The local search after the extension

Future Work

- Improve the approximation factor
- Find a lower bound for this method
 - Currently, we have 1.5 for Steiner Tree
- Beat 2-approximation factor for generalizations
 - Survivable Network Design
 - Prize-Collecting Steiner Forest

Questions?

Thank You!