
Breaking a Long-
Standing Barrier:
2-ε Approximation for
Steiner Forest
Peyman Jabbarzade

Ali Ahmadi Iman Gholami

Mohammad T. Hajiaghayi Mohammad Mahdavi

Steiner Forest

• Given a weighted graph

• And a set of pairs of vertices

2

Steiner Forest

• Given a weighted graph

• And a set of pairs of vertices

• Select a subset of edges to connect vertices in each pair
• Minimize the total cost of selected edges

• Generalization of Steiner Tree

3

Steiner Tree

• Given a weighted graph

• And a set of vertices as terminals

4

Steiner Tree

• Given a weighted graph

• And a set of vertices as terminals

• Select a subset of edges to span the terminals
• Minimize the total cost of selected edges

• Generalization of MST

5

Previous Results

• Steiner Tree
• Introduced in 1811
• Trivial 2-approximation
• 11/6-approx. [Zel, Algorithmica’93]
• 1.65-approx. [KZ, J. Comb. Optim.’97]
• 1.55-approx. [RZ, SIAM J. Discret. Math.’05]
• 1.39-approx. [BGRS, STOC’10]

• Steiner Forest
• 2-approx. [AKR, SIAM J. Comput’95]

• Generalization and refinement [GW, SIAM J. Comput.’95]

• 96-approx. Greedy [GK, STOC’15]
• 69-approx. Local Search [GGKMSSV, ITCS’18]

6

Our Contribution

• Steiner Tree
• Introduced in 1811
• Trivial 2-approx.
• 11/6-approx. [Zel, Algorithmica’93]
• 1.65-approx. [KZ, J. Comb. Optim.’97]
• 1.55-approx. [RZ, SIAM J. Discret. Math.’05]
• 1.39-approx. [BGRS, STOC’10]

• Steiner Forest
• 2-approx. [AKR, SIAM J. Comput’95]

• Generalization and refinement [GW, SIAM J. Comput.’95]

• 96-approx. Greedy [GK, STOC’15]
• 69-approx. Local Search [GGKMSSV, ITCS’18]

• Steiner Tree
• 1.943-approx. [AGHJM’25]

• Steiner Forest
• (2-10-11)-approx. [AGHJM’25]

7

Our Algorithm Outline

8

Legacy Moat Growing Algorithm
The primal-dual 2-approximation algorithm

Basics

• Edges are curves with length=cost

• Maintain a forest
• Initially empty

• Active sets
• Connected components need to extend

10

Moat Growing

• Active sets color their adjacent edges
• Edges with exactly one endpoint in them

• Once an edge becomes fully colored
• Add the edge to our forest

11

Moat Growing

• Active sets color their adjacent edges
• Edges with exactly one endpoint in them

• Once an edge becomes fully colored
• Add the edge to our forest

• Merge its endpoints connected components

• Continue grow together (if still active)

12

Pruning Phase

• Remove redundant edges

13

Analysis

• R: Total growth duration across all active sets

• Optimal solution is at least R

• Our solution is at most 2R

• So, it is a 2-approximate solution

14

OPT Lower Bound

• R: Total growth duration across all active sets

• Optimal solution is at least R

• A component is active for connecting some pairs
• OPT connects those pairs

• The active set cuts the path between them

• So, it is coloring at least one edge of OPT

15

Solution Upper Bound

• R: Total growth duration across all active sets

• Our solution is at most 2R

• All selected edges are fully colored

• At each moment of the algorithm
• Active sets on average color at most two segments of it

16

How to Improve the Algorithm?
Observations on the analysis

Recap Analysis

• R: Total growth duration across all active sets

• Optimal solution is at least R -> improve to (1+ε)R

• Our solution is at most 2R -> improve to (2-ε)R

• It is a 2-approximate solution -> (2-ε)-approximate solution

18

Better Lower Bound for OPT

• R: Total growth duration across all active sets

• Optimal solution is at least R

• Active sets color at least one edge of OPT

• If they color multiple edges for ε fraction of total growth
• OPT is larger than (1+ε)R

19

Reduce Total Growth Duration (R)

• R: Total growth duration across all active sets

• Our solution is at most 2R

• Modifying active sets behavior
• Reducing total growth by a constant factor

• Resulting a new solution
• Pairs should be still connected

• The new solution is at most (2-ε)R

20

Objective

• R: Total growth duration across all active sets

• Optimal solution is at least R -> improve to (1+ε)R

• Our solution is at most 2R -> improve to (2-ε)R

• Reduce total growth to obtain
• Total growth < (1-ε)OPT

21

0 2OPTOPT

total growth our solution

Local Search
Incremental reduction on total growth

An Example on Steiner Tree

23

1+εv

2

Boost Action

• Select a vertex and a specific time
• Let the vertex remains active until that time

• Win: Reduction in total growth

• Loss: Additional growth introduced by the boost action

• Valuable boost action
• Win > β.Loss

• Apply any valuable boost action while one exists

24

An Example on Steiner Tree

25

1+εv

2

Previous Local Searches

• Steiner Tree
• 11/6-approx. [Zel, Algorithmica’93]

• 1.55-approx. [RZ, SIAM J. Discret. Math.’05]

• Start with a 2-approximate solution

• Find a constant-size subgraph
• Such that adding it improve the solution

• Do this until no improvement is possible

26

Previous Local Searches

• Steiner Tree
• 11/6-approx. [Zel, Algorithmica’93]

• 1.55-approx. [RZ, SIAM J. Discret. Math.’05]

• Start with a 2-approximate solution

• Find a constant-size subgraph
• Such that adding it improve the solution

• Do this until no improvement is possible

27

Comparison with Previous Approaches

• Our objective is reducing total growth
• Instead of the solution cost

• May lead to a worse solution
• Give a better upper bound for the solution

• And more structural properties

• And make it possible to analysis with growth of active sets

28

Recap: Objective

• R: Total growth duration across all active sets

• Optimal solution is at least R

• Our solution is at most 2R

• Reduce total growth to obtain (local search)
• Total growth < (1-ε)OPT

29

0 2OPTOPT

total growth our solution

Claw Property
A result of our local search

Claw Property

• After our local search
• No valuable boost action

• Win < β.Loss

• Win = current total growth – total growth after boost action

• Current total growth ≲ ½ claw’s cost + max growth

½ claw’s cost + max growth

≤

Claw Property

• For any three vertices

• Total growth except max ≲ ½ claw’s cost
• Objective: Total growth < (1-ε)OPT

Generalized Claw Property

• For any number of vertices 𝑆

• Bound the total growth corresponds to vertices in 𝑆
• By a factor (1-ε) of the cost of any tree connecting them

• Assume WLOG that tree is binary with 𝑆 as leaves

33

S

How Does It Work?

• For any vertex of 𝑇
• Its representative is the nearest leaf in its subtree

• Fix the three representatives of
• Its two children and its sibling

• Write claw property for these leaves
• (total-max) growth ≲ ½ claw’s cost

• Sum up the inequalities

34

How Does It Work?

(total-max) claw growth ≲ ½ claw’s cost

+ (total-max) claw growth ≲ ½ claw’s cost

+ …

+ (total-max) claw growth ≲ ½ claw’s cost

 3(total–max) leaves growth ≲ 5/2 tree’s cost

• Total growth – max ≲ 5/6 cost of tree
• Only works when vertices are actively connected

35

Actively Connect

• Two vertices are actively connected if
• They are in active sets until reaching each other

36

Issue With Not Actively Connected

• Total growth except max ≲ ½ claw’s cost

• Only comparing small value with claw’s cost

Recap: How Does It Work?

(total-max) claw growth ≲ ½ claw’s cost

+ (total-max) claw growth ≲ ½ claw’s cost

+ …

+ (total-max) claw growth ≲ ½ claw’s cost

 3(total–max) leaves growth ≲ 5/2 tree’s cost

• Total growth – max ≲ 5/6 cost of tree
• Only works when vertices are actively connected

38

Claw Property in Steiner Tree

• All terminals are actively connected

• Generalized claw property applicable

• Local search achieves 1.943-approximate solution

39

Claw Property in Steiner Forest

• For each connected component in the OPT
• Want to bound the growth corresponds to its vertices

• By the cost of that component

• But
• Those vertices may not be actively connected

• Extension

• Bound excludes the maximum growth
• Autarkic pairs

40

Extension
When vertices are not actively connected

Why Extension?

• For applying claw property
• Vertices need to be actively connected

• Not guaranteed for components of OPT

• Idea: Let components remain active a bit more

• More vertices connect actively

42

1

10 10

100

Extension

• Given a moat growing algorithm

• Assign a potential to each active set
• 𝜖 fraction of its growth

• Run the moat growing algorithm again

• Sets consume potential of their subsets to remain active

43

How Does It Help?

• If most vertices in a component of OPT actively connect
• Use generalized claw property

• Otherwise
• Vertices in that component must be far

• Cost of OPT is already large compared to total growth

• We find a better lower bounds for OPT either way

44

Autarkic Pairs
For large maximum growth

Claw Property Shortcoming

• For applying claw property on a set of vertices
• They need to be connected in the optimal solution

• For each OPT’s component
• Claw property bound the total growth

• Except the maximum one

(1) (2) (3) 46

e1

e1

e2

e2

Example

1

1

10

n pairs

Cost: n+10 Cost: 2n+1
47

Classify Components of OPT

• Let C be a connected component in OPT
• Total growth ≤ cost(C)

• Claw property
• Total growth except max

• If maximum growth is small
• Total growth is small

• Otherwise
• Claw property is not enough

0 cost(C)

0 cost(C)

0 cost(C)

0 cost(C)
Tight component

48

Maximum
growth

Total except max

Tight Components Structure

Use claw property
OPT connecting them is large
Total growth less than cost(C)

0 cost(C)

0 cost(C)

Tight component

49

Maximum
growth

Total except max

How to Handle Tight Components?

• Since we have two far groups

• Buy shortest path for (only) one pair

• Add zero-cost edge between them

• Rerun the moat growing algorithm
• Those groups do not need to grow excessively

• But we don’t know OPT! 0

50

Autarkic Pair

• Two group of unsatisfied vertices

• Pair of each other

• Vertices in each group grow only with each other

• Their distance almost match their growth

51

Algorithm

• Find autarkic pairs

• Connect one pair of vertices from each group

• Add a zero-cost edge

• Rerun Legacy Moat Growing algorithm

0

52

Example

1

1

10

n pairs

53

0

0

0

0

Intuition of Analysis

• A general idea to improve an ⍺–approx. algorithm (⍺OPT)

• Find a structure with cost X and add it to our solution
• Here structure is a subset of edges

• Set the structure cost equal to 0

• Let OPT’ of the new instance be reduced by Y (OPT’=OPT-Y)

• Run ⍺–approx. algorithm on the new instance (⍺(OPT-Y)+X)

• If X < (⍺-ε)Y (improvement condition)
• And if X (or Y) is a constant fraction of OPT (significant condition)

• We have an (⍺-ε)-approx. algorithm

54

Intuition of Analysis

• ⍺=2 (improving 2-approximation algorithm)

• The structure with cost X
• Shortest paths between groups of each autarkic pair

• Set the structure cost equal to 0

• Let OPT’ of the new instance be reduced by Y (OPT’=OPT-Y)

• Run 2–approx. algorithm on the new instance (2OPT-2Y+X)

• X < (2-ε)Y (X≈Y)
• If tight components are significant (significant condition)

• We have a (2-ε)-approx. algorithm

55

Conclusion

• For tight components
• Autarkic pair works well

• For others
• The local search after the extension

56

Future Work

• Improve the approximation factor

• Find a lower bound for this method
• Currently, we have 1.5 for Steiner Tree

• Beat 2-approximation factor for generalizations
• Survivable Network Design

• Prize-Collecting Steiner Forest

57

Questions?
Thank You!

	Slide 1: Breaking a Long-Standing Barrier: 2-ε Approximation for Steiner Forest
	Slide 2: Steiner Forest
	Slide 3: Steiner Forest
	Slide 4: Steiner Tree
	Slide 5: Steiner Tree
	Slide 6: Previous Results
	Slide 7: Our Contribution
	Slide 8: Our Algorithm Outline
	Slide 9: Legacy Moat Growing Algorithm
	Slide 10: Basics
	Slide 11: Moat Growing
	Slide 12: Moat Growing
	Slide 13: Pruning Phase
	Slide 14: Analysis
	Slide 15: OPT Lower Bound
	Slide 16: Solution Upper Bound
	Slide 17: How to Improve the Algorithm?
	Slide 18: Recap Analysis
	Slide 19: Better Lower Bound for OPT
	Slide 20: Reduce Total Growth Duration (R)
	Slide 21: Objective
	Slide 22: Local Search
	Slide 23: An Example on Steiner Tree
	Slide 24: Boost Action
	Slide 25: An Example on Steiner Tree
	Slide 26: Previous Local Searches
	Slide 27: Previous Local Searches
	Slide 28: Comparison with Previous Approaches
	Slide 29: Recap: Objective
	Slide 30: Claw Property
	Slide 31: Claw Property
	Slide 32: Claw Property
	Slide 33: Generalized Claw Property
	Slide 34: How Does It Work?
	Slide 35: How Does It Work?
	Slide 36: Actively Connect
	Slide 37: Issue With Not Actively Connected
	Slide 38: Recap: How Does It Work?
	Slide 39: Claw Property in Steiner Tree
	Slide 40: Claw Property in Steiner Forest
	Slide 41: Extension
	Slide 42: Why Extension?
	Slide 43: Extension
	Slide 44: How Does It Help?
	Slide 45: Autarkic Pairs
	Slide 46: Claw Property Shortcoming
	Slide 47: Example
	Slide 48: Classify Components of OPT
	Slide 49: Tight Components Structure
	Slide 50: How to Handle Tight Components?
	Slide 51: Autarkic Pair
	Slide 52: Algorithm
	Slide 53: Example
	Slide 54: Intuition of Analysis
	Slide 55: Intuition of Analysis
	Slide 56: Conclusion
	Slide 57: Future Work
	Slide 58: Questions?

